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Abstract

We describe a computer program which is able to estimate
the tempo and the times of musical beats in expressively per-
formed music. The input data may be either digital audio or
a symbolic representation of music such as MIDI. The data
is processed off-line to detect the salient rhythmic events and
the timing of these events is analysed to generate hypotheses
of the tempo at various metrical levels. Based on these tempo
hypotheses, a multiple hypothesis search finds the sequence
of beat times which has the best fit to the rhythmic events.
We show that estimating the perceptual salience of rhythmic
events significantly improves the results. No prior knowledge
of the tempo, meter or musical style is assumed; all required
information is derived from the data. Results are presented
for a range of different musical styles, including classical,
jazz, and popular works with a variety of tempi and meters.
The system calculates the tempo correctly in most cases, 
the most common error being a doubling or halving of the
tempo. The calculation of beat times is also robust. When
errors are made concerning the phase of the beat, the system
recovers quickly to resume correct beat tracking, despite the
fact that there is no high level musical knowledge encoded
in the system.

Introduction

The task of beat tracking or tempo following is perhaps best
described by analogy to the human activities of foot-tapping
or hand-clapping in time with music, tasks of which average
human listeners are capable. Despite its apparent intuitive-

ness and simplicity compared to the rest of music perception,
beat tracking has remained a difficult task to define, and still
more difficult to implement in an algorithm or computer
program. In this paper, we address the problem of beat track-
ing, and describe algorithms which have been implemented
in a computer program for discovering the times of beats in
expressively performed music.

The approach taken in this work is based on the belief that
beat is a relatively low-level property of music, and therefore
the beat can be discovered without recourse to high-level
musical knowledge. It has been shown that even with no
musical training, a human listener can tap in time with music
(Drake et al., 2000). At the same time, it is clear that higher
level knowledge aids the perception of beat. Drake et al.
(2000) also showed that trained musicians are able to tap in
time with music more accurately and require less time to 
synchronise with the music than non-musicians.

The primary information required for beat tracking is the
onset times of musical events, and this is sufficient for music
of low complexity and little variation in tempo. For more dif-
ficult cases, we show that a simple estimation of the salience
of each musical event makes a significant improvement in the
ability of the system to find beat times correctly.

Motivation and applications

There are several areas of research for which this work is 
relevant, namely performance analysis, perceptual model-
ling, audio content analysis and synchronisation of a musical
performance with computers or other devices.

Performance analysis investigates the interpretation of
musical works, for example, the performer’s choice of tempo
and expressive timing. These parameters are important in
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40 S. Dixon

conveying structural and emotional information to the lis-
tener (Clarke, 1999). By finding the times of musical beats,
we can automatically calculate the tempo and variations in
tempo within a performance. This accelerates the analysis
process, thus allowing more wide-ranging studies to be 
performed.

Perception of beat is a prerequisite to rhythm percep-
tion, which in turn is a fundamental part of music percep-
tion. Several models of beat perception have been proposed
(Steedman, 1977; Longuet-Higgins & Lee, 1982; Povel &
Essens, 1985; Desain, 1992; Rosenthal, 1992; Parncutt,
1994; van Noorden & Moelants, 1999). Although this work
is not intended as a perceptual model, it can inform percep-
tual models by examining the information content of various
musical parameters, for example the relationship between the
musical salience and the metrical strength of events.

Audio content analysis is important for automatic index-
ing and content-based retrieval of audio data, such as in 
multimedia databases and libraries. This work is also neces-
sary for applications such as automatic transcription or score
extraction from performance data.

Another application of beat tracking is in the automatic
synchronisation of devices such as lights, electronic musical
instruments, recording equipment, computer animation and
video with musical data. Such synchronisation might be nec-
essary for multimedia or interactive performances or studio
post-production work. The increasingly large amounts of data
processed in this way leads to a demand for automatisa-
tion, which requires that the software involved operates in a
“musically intelligent” way, and the interpretation of beat is
one of the most fundamental aspects of musical intelligence.

Definitions of terms

We assign the following meanings to terms used throughout
the paper. Beat, as a phenomenon, refers to the perceived
pulses which are approximately equally spaced and define the
rate at which the notes in a piece of music are played. For a
specific performance, the beat is defined by the occurrence
times of these pulses (beat times), which are measured rela-
tive to the beginning of the performance.

A metrical level is a generalisation of the concept of the
beat, corresponding to multiples or divisors of the beat which
also divide the meter and any implied subdivision of the
meter evenly and begin on the first beat of the meter. For
example, we can talk about the quarter note level of a piece
in 3/4 or 4/4 meter, but not of a piece in 3/8 or 6/8 meter.
Similarly, a piece in 4/4 meter has a half note level and a
whole note level, whereas a piece in 3/4 time has a dotted
half note level. The primary metrical level is given by the
denominator of the time signature (the notated level), which
does not necessarily equate to the perceptually preferred 
metrical level for the beat.

Score time is defined as the relative timing information
derived from durations of notes and rests in the score, mea-
sured in abstract units such as quarter notes and eighth notes.
In conjunction with a metronome setting, score time can 

be converted to (nominal) note onset times measured in
seconds. The term performance time is used to refer to the
concrete, measured, physical timing of note onsets. We defer
discussion of the practical difficulties with the measurement
of performance time until the section on evaluation.

A mechanical or metrical performance is a performance
played strictly in score time. That is, all quarter notes have
equal duration, all half notes are twice as long as the quarter
notes, and so on. An expressive performance is any other per-
formance, such as any human performance.

Tempo refers to the rate at which musical notes are played,
expressed in score time units per real time unit, for example
quarter notes per minute. When the metrical level of the beat
is known, the tempo can be represented by the number of
beats per time unit (beats per minute is most common), or
inversely as the inter-beat interval, measured in time per
beat. Further, the tempo might be an instantaneous value,
such as the inter-beat interval measured between two suc-
cessive beats, or an average tempo measured over a longer
period of time. A measure of central tendency of tempo over
a complete musical excerpt is called the basic tempo (Repp,
1994), which is the implied tempo around which the expres-
sive tempo varies (not necessarily symmetrically).

Tempo induction is the process of estimating the basic
tempo from musical data, and a tempo hypothesis is one such
estimate generated by the tempo induction algorithm. Beat
tracking is the estimation of beat times based on a given
tempo hypothesis. The term beat phase is used to refer to the
times of musical events (or estimated beat times) relative to
actual beat times.

Outline of paper

In the background section, we review the literature on the
modelling and analysis of tempo and beat in music, from
score data, symbolic performance data and audio data, and
conclude with a brief summary of models of performance
timing and how they relate to this work.

The following three sections give a detailed description of
the algorithms used in tempo induction, beat tracking and
calculating musical salience respectively. For tempo induc-
tion from audio data, the onsets of events are found using 
a time-domain method which seeks local peaks in the slope
of the amplitude envelope. For symbolic performance data,
the notes are grouped by temporal proximity into rhythmic
events, and the salience of each event is estimated. The tempo
induction algorithm then proceeds by calculating the inter-
onset intervals between pairs of events (not necessarily adja-
cent), clustering the intervals to find common durations, 
and then ranking the clusters according to the number of
intervals they contain and the relationships between different
clusters, to produce a ranked list of basic tempo hypotheses.
These hypotheses are the starting point for the beat tracking
algorithm, which uses a multiple agent architecture to test 
the different tempo and phase hypotheses simultaneously,
and finds the agent whose predicted beat times match most
closely to those implied by the data. The evaluation of agents
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Automatic extraction of tempo and beat from expressive performances 41

is based on the assumption that the more salient events are
more likely to occur in metrically strong positions. The esti-
mation of musical salience is based on note duration, density,
pitch and amplitude.

Evaluation of the system is then discussed, and a number
of situations are presented in which the desired behaviour 
of a perfect beat tracking system is not clear. A practical
methodology for evaluation is then described, including a
formula for rating overall beat tracking performance on a
musical work.

The results section begins with a brief description of 
the implementation details of the system, and then pre-
sents results for tempo induction and beat tracking of audio
data, and then for symbolic data, using various measures of
musical salience. We show that for popular music, which has
a very regular beat, the onset times and amplitudes are suf-
ficient for calculating beat times, but for music with greater
expressive variations, note duration becomes an important
factor in being able to estimate beat times correctly.

The paper concludes with a discussion of the results
obtained, the strengths and weaknesses of the system, and a
preview of several possible directions of further work.

Background: tempo induction and 
beat tracking

Before discussing the methods, algorithms and results of 
the beat tracking system, we provide a brief background of
previous work in the area. The literature on tempo induction
and beat tracking is reviewed here in three parts, based on
the type of input data. Firstly we examine models processing
mechanical performances or musical scores, then we look at
work involving symbolic performance data (usually MIDI),
and finally we describe approaches to analysis of audio data.
We conclude this section with a review of models of perfor-
mance timing and discuss their relevance to beat tracking.

Scores and mechanical performance data

For data with no expressive timing, the inter-beat interval is
normally a multiple of the shortest duration, and all durations
can be expressed in terms of rational multiples of this inter-
val. Research using this type of data usually goes beyond
tempo induction, and tries to induce the complete metrical
hierarchy.

Steedman (1977) describes a model of perception using
note durations to infer accents, and melodic repetition to
infer metrical structure. He assumes that the meter is estab-
lished clearly before any syncopation can occur, and there-
fore weights information at the beginning of a piece more
highly than that which occurs later.

A model of rhythm perception developed by Longuet-
Higgins and Lee (1982) predicts beat times and revises 
the predictions in the light of the timing of events. For
example, after the first two onsets are processed, it is pre-
dicted that the third onset will occur after an equal time 

interval so that the 3 events are equally spaced. If this expec-
tation is fulfilled, the next expected interval is double the size
of the previous interval. This method successfully builds
binary hierarchies, but does not work for ternary meters. 
An extension of this work (Longuet-Higgins & Lee, 1984) 
provides a formal definition of syncopation and describes 
a preferred rhythmic interpretation as one which avoids 
syncopation.

Lerdahl and Jackendoff (1983) describe meter perception
as the process of finding periodicities in the phenomenal and
structural accents in a piece of music. They propose a set of
metrical preference rules, based on musical intuitions, which
are assumed to guide the listener to plausible interpretations
of rhythms. The rules prefer structures where: beats coincide
with note onsets; strong beats coincide with onsets of long
notes; parallel groups receive parallel metrical structure; and
the strongest beat occurs early in the group.

Povel and Essens (1985) propose a model of perception
of temporal patterns, based on the idea that a listener tries 
to induce an internal clock which matches the distribution of
accents in the stimulus and allows the pattern to be expressed
in the simplest possible terms. They use patterns of identi-
cal tone bursts at precise multiples of 200ms apart to test
their theory. They do not suggest how the theory should be
modified for musical data or non-metrical time.

A theoretical and experimental comparison of the 
above models is reported by Lee (1991). He concludes that
every meter has a canonical accent pattern of strong and
weak beats, and that listeners induce meter by matching the
natural accent patterns occurring in the music to the can-
onical accent pattern of possible rhythmic interpretations. In
this model, major syncopations and weak long notes are
avoided.

Desain and Honing (1999) compare several tempo induc-
tion models, integrating them into a common framework and
showing how performance can be improved by optimisation
of the parameters.

Symbolic performance data

Much of the work in machine perception of rhythm has used
MIDI files as input (Rosenthal, 1992; Rowe, 1992; Desain,
1993; Large, 1995; Cemgil et al., 2000).

The input is usually interpreted as a series of event times,
ignoring the event duration, pitch, amplitude and chosen syn-
thesizer voice. That is, each note is treated purely as an un-
interpreted event. It is assumed that the other parameters do
not provide essential rhythmic information, which in many
circumstances is true. However, there is no doubt that these
factors provide useful rhythmic cues; for example, more
salient events tend to occur on stronger beats.

Notable work using MIDI file input is Rosenthal’s emula-
tion of human rhythm perception (Rosenthal, 1992), which
produces multiple hypotheses of possible hierarchical struc-
tures in the timing, assigning a score to each hypothesis, cor-
responding to the likelihood that a human listener would
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42 S. Dixon

choose that interpretation of the rhythm. This technique gives
the system the ability to adjust to changes in tempo and
meter, as well as avoiding many implausible rhythmic 
interpretations.

A similar approach is advocated by Tanguiane (1993),
using Kolmogorov complexity as the measure of the likeli-
hood of a particular interpretation, with the least complex
interpretations being favoured. He provides an information-
theoretic account of human perception, and argues that many
of the “rules” of music composition and perception can be
explained in information-theoretic terms.

Desain (1993) compares two different approaches to mod-
elling rhythm perception, the symbolic approach of Longuet-
Higgins (1987) and the connectionist approach of Desain 
and Honing (1989). Although this work only models one
aspect of rhythm perception, the issue of quantisation, and
the results of the comparison are inconclusive, it does high-
light the need to model expectancy, either explicitly or
implicitly. Expectancy is a type of predictive modelling rel-
evant to real time processing, which provides a contextual
framework in which subsequent rhythmic patterns can be
interpreted with less ambiguity.

Allen and Dannenberg (1990) propose a beat tracking
system that uses beam search to consider multiple hypotheses
of beat timing and placement. A heuristic evaluation func-
tion directs the search, preferring interpretations that have a
“simple” musical structure and make “musical sense”,
although these terms are not defined. They also do not
describe the input format or any specific results.

Large and Kolen (1994); Large (1995, 1996) use a non-
linear oscillator to model the expectation created by detect-
ing a regular pulse in the music. The system does not perform
tempo induction; the basic tempo and initial phase must be
supplied to the system, which then tracks tempo variations
using a feedback loop to control the frequency of the oscil-
lator. On improvised melodies, the system achieved a mean
absolute phase error of under 10% for most data, which was
considered subjectively good.

Another system which uses multiple hypotheses is from
Rowe (1992), who discretises the complete tempo range into
123 inter-beat intervals ranging from 280ms to 1500 ms 
in 10ms steps, corresponding to metronome markings of
40–208 beats per minute. Each tempo theory tries to provide
a plausible rhythmic interpretation for incoming events, and
the most successful theories are awarded points. The system
copes moderately well with simple input data, but cannot
deal with complex rhythms.

An alternative approach is to model tempo tracking in a
probabilistic framework (Cemgil et al., 2000). The beat times
are modelled as a dynamical system with variables repre-
senting the rate and phase of the beat, and corresponding to
a perfect metronome corrupted by Gaussian noise. A Kalman
filter is then used to estimate the unknown variables. Since
the beat times are not directly observable from the data, they
are induced by calculating a probability distribution for pos-
sible interpretations of performances. The system parameters

are estimated by training on a data set for which the correct
beat times are known. The system performs well (over 90%
correct) on a large number of performances of a simple
arrangement of a popular song. The results are compared
with the current system in Dixon (2001a).

Audio data

The earliest work on automatic extraction of rhythmic
content from audio data is found in the percussion tran-
scription system of Schloss (1985). Onsets are detected as
peaks in the slope of the amplitude envelope, where the enve-
lope is defined to be equal to the maximum amplitude in each
period of the high-pass filtered signal, and the period defined
as the inverse of the lowest frequency expected to be present
in the signal. The main limitation of the system is that it
requires parameters to be set interactively. Also, no quanti-
tative evaluation was made; only subjective testing was per-
formed, by resynthesis of the signal.

The main work in beat tracking of audio data is by Goto
and Muraoka (1995, 1997a,b, 1998, 1999) who developed
two beat tracking systems for popular music, the first for
music containing drums and the second for music without
drums. The earlier system (BTS) examines the frequency
bands centred on the frequencies of the snare and bass drums,
and matches the patterns of onset times of these two drum
sounds to a set of pre-stored drum patterns. This limits the
system to a very specific style of music, but the beat track-
ing on suitable songs is almost always successful.

Goto and Muraoka’s second system makes no assumption
about drums; instead, it uses frequency-domain analysis to
detect chord changes, which are assumed to occur in metri-
cally strong positions. This is the first system to demonstrate
the use of high level knowledge in directing the lower-level
beat tracking process. The high level knowledge is specific
to the musical style, which is a major limitation of the
system. Furthermore, all music processed by the system 
is assumed to be in 4/4 time, with a tempo between 61 and
120 quarter note beats per minute, chord changes occurring
in strong metrical positions (not every beat), and no tempo
changes.

Both systems are based on a multiple agent architecture
using a fixed number of agents (28 and 12 in the two systems,
respectively). Each agent predicts the beat times using 
different strategies (parameter settings). One feature of this
work which does not appear in most beat tracking work is
that three metrical levels (quarter note, half note and whole
note) are tracked simultaneously. The system also operates in
real time, for which it required a multiple-processor com-
puter at the time it was built. (A fast personal computer today
has almost the same computing power.)

Scheirer (1998) also describes a system for the beat track-
ing of audio signals, based on tuned resonators. The signal
is split into 6 frequency bands, and the amplitude envelopes
in each band are extracted, differentiated and rectified before
being passed to a bank of 150 comb filters (representing 
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Automatic extraction of tempo and beat from expressive performances 43

each possible tempo on a discretised scale). The output of 
the filters is summed across the frequency bands, and the
maximum output gives the tempo and phase of the signal.
The system was evaluated qualitatively on short musical
excerpts from various styles, and successfully tracked 41 of
the 60 examples. One problem with the system is that in
order to track tempo changes, the system must repeatedly
change its choice of filter, which implies the filters must be
closely spaced to be able to smoothly track tempo variations.
However, the system applies no continuity constraint when
switching between filters.

Two recent approaches which find periodicities in audio
data have been proposed (Cariani, 2001; Sethares & Staley,
2001). Cariani (2001) presents a neurologically plausible
model called a recurrent timing net (RTN). The audio data is
preprocessed by finding the RMS amplitude in overlapping
50ms windows of the signal, and the resulting data is passed
to the RTN, which effectively computes a running autocor-
relation at all possible time lags in order to find the most sig-
nificant periodicities in the data. Sethares and Staley (2001)
filter the audio signal into 1/3 octave bands, decimate to a
low sampling rate and then search for periodicities using 
the periodicity transform developed previously in (Sethares
& Staley, 1999). Although both of these approaches use
audio input, they assume constant tempo performances, and
so are not directly relevant to the analysis of expressive 
performance.

Modelling of performance timing

An understanding of rules governing expressive timing 
is advantageous in developing a system to follow tempo
changes. Technical advances over the last decades have 
facilitated the analysis of timing in music performance in
ways that were previously infeasible. Clarke (1999) and
Gabrielsson (1999) review research in this area and conclude
that expressive timing is generated from the performers’
understanding of the musical structure and general knowl-
edge of music theory and musical style. However, there is no
precise mathematical model of expressive timing, and the
complexity of musical structure from which timing is derived,
coupled with the individuality of each performer and per-
formance, makes it impossible to capture musical nuance in
the form of rules. Attempts to formulate rules governing the
relationship between the score and expressive timing (Todd,
1985; Clarke, 1988; Friberg, 1995) are partially successful,
as judged by listening tests and by comparison with perfor-
mance data, but ignore individual performers’ interpretation
and cover only limited aspects of musical performance.

Tempo induction

The beat tracking system has two stages of processing, the
initial tempo induction stage, which is described in this
section, and the beat tracking stage, which appears in the 
following section. The tempo induction stage examines the

times between pairs of note onsets, and uses a clustering
algorithm to find significant clusters of inter-onset intervals.
Each cluster represents a hypothetical tempo, expressed as
an inverse value, the inter-beat interval, measured in seconds
per beat. The tempo induction algorithm ranks each of the
clusters, with the intention that the most salient time inter-
vals are ranked most highly. The output from this stage (and
input to the beat tracking stage) is the ranked list of tempo
hypotheses, each representing a particular beat rate, but
saying nothing about the beat times (or beat phase), which
are calculated in the subsequent beat tracking stage.

The tempo induction algorithm operates on rhythmic
events, an abstract representation of the performance data as
a weighted sequence of time points. A rhythmic event may
represent the onset of a single note or a collection of notes
played approximately simultaneously. Events are charac-
terised by their onset time and a salience value which is cal-
culated from the parameters of the constituent notes of the
event, such as pitch, loudness, duration, and number of con-
stituents. We now describe the various input data formats,
and then the generation of the rhythmic event representation
of performance data, and finally present the tempo induction
algorithm based on this representation.

Input data

There are two types of input data accepted by the beat track-
ing system: digital audio and symbolic performance repre-
sentations, which are described in turn.

There are a large number of digital audio formats cur-
rently in use, which provide various possible representations
of the audio data, allowing the user to choose the bit rate
and/or compression algorithm suitable for the task at hand.
Considering the wide availability of software for converting
between formats, we limited the input data format to uncom-
pressed linear pulse code modulated (PCM) signals, as found
on compact discs and often used in computer audio applica-
tions. The specific file format may be either the MS “.wav”
format or SUN “.snd” format, both of which permit choices
of sampling rates, word sizes and numbers of channels. For
the results reported in this paper, single channel 16 bit linear
PCM data was used, with a sampling rate of 44100Hz. This
data was created directly from compact discs by averaging
the two channels of the original stereo recordings.

Two symbolic formats may be used, MIDI, the almost uni-
versal format for symbolic performance data, and the Match
format, a locally developed text format combining the 
representation of MIDI performance data with the musical
score, and associating the corresponding notes in each. The
Match format facilitates the automatic evaluation of the beat
tracking results relative to the musical score.

Rhythmic events

Rhythmic information is primarily carried by the onset 
times of musical components (musical notes and percussive
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sounds). When these components have onset times which 
are sufficiently close together, they are heard as a com-
posite event, which we name a rhythmic event. A rhythmic
event is characterised by an onset time and a salience. 
Rhythmic events represent the most basic unit of rhythmic
informa-tion, from which all beat and tempo information is
derived. The process of deriving the rhythmic events from
symbolic data is entirely different from that required for
audio data, as most of the required information is directly
represented in the symbolic data, whereas it must be esti-
mated by an imperfect onset detection algorithm in the 
audio case.

Symbolic data

For symbolic representations, the onset time of each musical
note is encoded directly in the data. This onset time denotes
the beginning of the waveform, not the perceived onset time,
which usually falls slightly later, depending on the rise time
of the instrument (Vos & Rasch, 1981; Gordon, 1987). With
symbolic data, it is not possible to correct for the instru-
mental rise time, because the waveform is not encoded in the
data, and thus is unknown. However, since most rhythmic
information is carried by percussive instruments or other
instruments with very short rise times, this does not create a
noticeable problem.

The first task which must be performed is to group any
approximately simultaneous onsets into single rhythmic
events, and calculate the salience of each of the rhythmic
events. In studies of chord asynchrony in piano and en-
semble performance, it has been shown that asynchronies of
30–50ms are common, and much larger asynchronies also
occur (Sundberg, 1991; Goebl, 2001). Perception research
has shown that with up to 40ms difference in onset times,
two tones are heard as synchronous, and for more than two
tones, the threshold is up to 70ms (Handel, 1989). In this
work, a threshold of 70ms was chosen for grouping near
onsets into single rhythmic events.

The second task is to calculate the salience of the rhyth-
mic events. Music theory identifies several factors which
contribute to the perceived salience of a note. We particularly
focus on note duration, density, dynamics and pitch in this
work, since these factors are represented in the MIDI and
Match file data. The precise way in which these factors are
combined to give a numerical salience value for each rhyth-
mic event is described later.

Audio data

Audio data requires significant processing in order to extract
any symbolic information about the musical content of the
signal. To date, no algorithm has been developed which is
capable of reliably extracting the onset times of all musical
notes from audio data. Nevertheless, it is possible to extract
sufficient information in order to perform tempo induction
and beat tracking. In fact, beat tracking may be improved by

a lossy onset detection algorithm, as it implicitly filters out
the less salient onsets (Dixon, 2000).

The onset detection method is based loosely on the tech-
niques of Schloss (1985), who analysed audio recordings 
of percussion instruments in order to transcribe perfor-
mances. The signal is passed through a first order high pass
filter, and then smoothed to produce an amplitude envelope.
The amplitude envelope is calculated as the average absolute
value of the signal within a window of the signal. In this work
a window of 20ms was used, with a 50% overlap, so that
smoothed amplitude values were calculated at 10ms inter-
vals. A 4-point linear regression is used to find the slope of
the amplitude envelope, and a peak-picking algorithm then
finds local maxima in the slope of the amplitude envelope.
Local peaks are rejected if there is a greater peak within 
50ms, or if the peak is below threshold (10% of the average
amplitude per 10ms). The default parameter values as used
in this work were determined empirically, but all values can
be adjusted via command-line parameters.

For tasks such as transcription, it is important that all
onsets are found, and the present time-domain technique
would not suffice – it would be necessary to use a frequency
domain method to detect onsets more reliably. However, for
beat tracking, it is advantageous to discover just the most
salient onsets, as these are more likely to correspond to beat
times. In other words, the onset detection algorithm performs
an implicit filtering of the true onsets, removing those with
a low salience. The actual salience value for the detected
peaks, used later in the beat tracking algorithm, is a linear
function of the logarithm of the amplitude envelope value.

The onset detection algorithm has not been tested for
music without instruments with sharp rise times; we expect
that in this case a frequency domain algorithm would be
required to find onsets sufficiently reliably.

Clustering of inter-onset intervals

Once the rhythmic events have been determined, the time
intervals between pairs of events reveal their rhythmic struc-
ture. The clustering algorithm (Fig. 1) uses this data to gen-
erate a ranked list of tempo hypotheses, which are then 
used as the basis for beat tracking. In the literature, an inter-
onset interval (IOI) is defined as the time between two 
successive events. We extend the definition to include com-
pound intervals, that is intervals between pairs of events
which are separated by other events. This is important in
reducing the effect of any events which are uncorrelated with
the beat.

Rhythmic information is provided by IOIs in the range 
of approximately 50ms to 2 s (Handel, 1989). The clustering
algorithm assigns each IOI to a cluster of similar intervals,
if one exists, or creates a new cluster for the IOI if no suffi-
ciently similar cluster exists. The clusters are characterised
by the average of the IOIs contained in the cluster, which we
denote the interval of the cluster. Similarity holds if the given
IOI lies within a small distance (called the cluster width) of
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Automatic extraction of tempo and beat from expressive performances 45

the cluster’s interval. The cluster width is kept small (in this
work 25ms) so that outlying values do not affect the cluster’s
interval. Nevertheless, the incremental building of the clus-
ters means that the interval of a cluster can drift as IOIs are
added.

Once cluster formation is complete, pairs of clusters
whose intervals have drifted together are merged, and the
clusters are ranked according to the number of elements they
contain, with an adjustment for any related clusters. Two
clusters are said to be related if the interval of one cluster is
within the cluster width of an integer multiple of that of the
other cluster. This reflects the expectation that for a cluster
representing the beat, there will also exist clusters represent-
ing integer multiples and integer divisions of the beat. The
adjustment is applied to the cluster’s interval by calculating
the average of the related clusters’ normalised intervals,
weighted by their scores. The ranking of the clusters is also

adjusted by adding the scores of related clusters, weighted 
by a relationship factor f(d ), where d is the integer ratio of
cluster intervals, given by:

The top ranked clusters represent a set of hypotheses as to
the basic tempo of the music. At this point it is not neces-
sary to choose between hypotheses; this choice is made later
by the beat tracking algorithm. The clustering algorithm is
usually successful at ranking the primary metrical level as
one of the highest ranking clusters (see results section). What
the clustering algorithm does not provide is any indication of
the beat times. This task is performed by the beat tracking
stage described in the next section.
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Fig. 1. Algorithm for clustering of inter-onset intervals.



D
ow

nl
oa

de
d 

B
y:

 [E
P

S
C

oR
 S

ci
en

ce
 In

fo
rm

at
io

n 
G

ro
up

 (E
S

IG
) D

ek
ke

r T
itl

es
 o

nl
y 

C
on

so
rti

um
] A

t: 
20

:2
7 

12
 S

ep
te

m
be

r 2
00

7 

46 S. Dixon

Example

We illustrate the tempo induction stage with a short example.
Consider the sequence of five events A, B, C, D, E shown on
the time line in Figure 2. Below the time line, the horizontal
lines with arrows represent each of the inter-onset intervals
between pairs of events, and these lines are labelled with the
name of the cluster to which they are assigned. Five clusters
are created, denoted C1, C2, C3, C4 and C5, with C1 = {AB,
BC, DE}, C2 = {AC, CD}, C3 = {BD, CE}, C4 = {AD, BE}
and C5 = {AE}. The scores for each cluster are calculated as
follows:

C1.score = 2*3*f(1)+ 2 * f(2) + 2 * f(3) + 2 * f(4)+ f(5) = 49
C2.score = 3 * f(2) + 2 *2 * f(1) + 0 + 2 * f(2) + 0 = 40
C3.score = 3 * f(3) + 0 + 2 *2 * f(1) + 0 + 0 = 29
C4.score = 3 * f(4) + 2 * f(2) + 0 + 2 *2 * f(1) + 0 = 34
C5.score = 3 * f(5) + 0 + 0 + 0 + 2 *1 * f(1) = 13

Therefore the clusters are ranked in the following order: C1,
C2, C4, C3, C5.

Beat tracking

The beat tracking architecture

The tempo induction algorithm computes the approximate
inter-beat interval, that is, the time between successive beats,
but does not calculate the beat times. In Figure 2, for
example, one hypothesis might be that C2 represents the
inter-beat interval, but it does not determine whether events
A, C and D are beat times or whether B, E and the midpoint
of BE are beat times. That is, tempo induction calculates the
beat rate (frequency), but not the beat time (phase).

In order to calculate beat times, a multiple hypothesis
search is employed, with an evaluation function selecting the
hypothesis that fits the data best. Each hypothesis is handled
by a beat tracking agent, which is able to predict beat times
and match them to rhythmic events, adjust its hypothesis of
the current beat rate and phase, create a new agent when there
is more than one reasonable path of action, and cease opera-
tion if it is found to be duplicating the work of another agent.

Each agent is characterised by its state and history. The
state is the agent’s current hypothesis of the beat frequency

and phase, and the history is the sequence of beat times
selected to date by the agent. The agents can also assess their
performance, by evaluating the goodness of fit of the track-
ing decisions to the data.

The system is designed to track smooth changes in tempo
and small discontinuities; the choice of a single best agent
based on its cumulative score for beat tracking the whole
piece means that a piece which changes its basic tempo sig-
nificantly will not be tracked correctly. In future work we
plan to examine a real time approach to beat tracking, using
an incremental tempo induction algorithm; at each point in
time the best agent is chosen based on a combined score for
its tempo and the tracking of music up to that time, thus
allowing sudden changes in tracking behaviour when the pre-
vious best agent ceases to be able to track the data correctly.

The beat tracking algorithm

The beat tracking algorithm is given in full in Figure 3. This
algorithm is now explained in detail, with reference to the
example shown in Figure 4.

Initialisation

For each hypothesis generated by the tempo induction phase,
a group of agents are created to track the piece at this tempo.
Based on the assumption that at least one event in the initial
section of the music coincides with a beat time (normally
there will be many events satisfying this condition), an agent
is created for each event in the initial section, with its first
beat time coinciding with that of the respective event. Using
this approach, it is usually the case that there is an agent that
begins with the correct tempo and phase.

The initial section, as defined by the constant Startup-
Period in the algorithm, was set to be the first 5 seconds of
the music. In some cases, for example when a piece has a
free-time introduction, it is possible that no agent starts with
the correct tempo and phase. However, an agent with approx-
imately the correct tempo will be able to adjust its tempo and
phase in order to synchronise with the beat.

In Figure 4, a simplified example illustrates the operation
of the beat tracking algorithm. The rhythmic events (denoted
A, B, C, D, E and F) are represented on the time line at the
top of the figure. The beat tracking behaviour of each agent
is represented by the horizontal lines connecting filled and
hollow circles. The filled circles represent beat times which
correspond to a rhythmic event, and the hollow circles are
beat times which were interpolated because no rhythmic
event occurred at that time.

The figure illustrates 2 tempo hypotheses from the tempo
induction stage. The faster tempo, with an inter-beat interval
approximately equal to the time interval between events A
and B, is the tempo hypothesis of Agent 1. The slower tempo,
with inter-beat interval approximately equal to the interval
between C and D, is the tempo hypothesis of the other agents.
For the initialisation stage, assume that only events A and B

Time
Events

IOI’s

A B C D E

C1 C1 C2 C1

C2

C3

C3

C4

C4

C5

Fig. 2. Clustering of inter-onset intervals (IOI’s).
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Automatic extraction of tempo and beat from expressive performances 47

a fast tempo agent beginning on event B would be redundant,
since Agent1 also predicts B as a beat time.

Main loop

In the main body of the beat tracking algorithm, each event
is processed in turn by allowing each agent the opportunity
to consider the event as a beat time. Each agent has a 
set of predicted beat times, which are generated from the
most recent beat time by adding integer multiples of the
agent’s current inter-beat interval. These predicted beat times
are surrounded by two-level windows of tolerance, which
represent the extent to which an agent is willing to accept an
alteration to its prediction (see Fig. 5). The inner window, set
at 40ms either side of the predicted beat time, represents the
deviations from strict metrical time which an agent is willing
to accept. The outer window, with a default size of 20% and

` ò É Í É Ì È É ô Ì Í É Ç ò

ü ² 4 Ñ Ó Ú Ð Ò Ñ Þ ß Ö Ð ã ß Ö Ò Ð Ñ Ô Û Ô a ù

ü ² 4 Ñ Ó Ú Ð Ñ æ Ñ Ü Ò í ú Ô å Ú Ð Ò Ð Ó Ò í ú ø Ö Ü Ô Ñ Ò ) % Ò Ó Ù Ò å ß � Ñ Ù Û Ö â

� Ù Ñ Ó Ò Ñ Ó Ü Ñ á Ó Ý Ñ Ü Ò é &

é & ø Ø Ñ Ó Ò ì Ü Ò Ñ Ù æ Ó à « Ø a ù

é & ø ß Ù Ñ â Û Ú Ò Û Ö Ü « Ø í ú è Ö Ü Ô Ñ Ò 6 a ù

é & ø Ð Û Ô Ò Ö Ù ã « Ø e í ú g

é & ø Ô Ú Ö Ù Ñ « Ø í ú ø Ô Ó à Û Ñ Ü Ú Ñ

2 8 é ü ² 4

2 8 é ü ² 4

h Ì É ò i Ç Ç j

ü ² 4 Ñ Ó Ú Ð Ñ æ Ñ Ü Ò í ù

ü ² 4 Ñ Ó Ú Ð Ó Ý Ñ Ü Ò é ú

ì ü í ù ø Ö Ü Ô Ñ Ò Ý é ú ø Ð Û Ô Ò Ö Ù ã è à Ó Ô Ò k Ï Û Þ Ñ ² å Ò Ï - 2 8

é Ñ à Ñ Ò Ñ Ó Ý Ñ Ü Ò é ú

2 + % 2

N - ì + 2 é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü 6 a à m n p q r ) í ù ø Ö Ü Ô Ñ Ò

é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü « Ø é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü 6 é ú ø Ø Ñ Ó Ò ì Ü Ò Ñ Ù æ Ó à

2 8 é N - ì + 2

ì ü é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü 6 a à m n s u ß í ù ø Ö Ü Ô Ñ Ò ß é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü 6 a à m n p q r Ï - 2 8

ì ü ! é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü Ý í ù ø Ö Ü Ô Ñ Ò ! k a à m ù w w u s

� Ù Ñ Ó Ò Ñ Ü Ñ á Ó Ý Ñ Ü Ò é & « Ø é ú

2 8 é ì ü

2 Ù Ù Ö Ù « Ø í ù ø Ö Ü Ô Ñ Ò Ý é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü

é ú ø Ø Ñ Ó Ò ì Ü Ò Ñ Ù æ Ó à « Ø é ú ø Ø Ñ Ó Ò ì Ü Ò Ñ Ù æ Ó à 6 2 Ù Ù Ö Ù y � Ö Ù Ù Ñ Ú Ò Û Ö Ü ü Ó Ú Ò Ö Ù

é ú ø ß Ù Ñ â Û Ú Ò Û Ö Ü « Ø í ù ø Ö Ü Ô Ñ Ò 6 é ú ø Ø Ñ Ó Ò ì Ü Ò Ñ Ù æ Ó à

é ú ø Ð Û Ô Ò Ö Ù ã « Ø é ú ø Ð Û Ô Ò Ö Ù ã 6 í ù

é ú ø Ô Ú Ö Ù Ñ « Ø é ú ø Ô Ú Ö Ù Ñ 6 ó î Ý Ù Ñ à Ó Ò Û æ Ñ 2 Ù Ù Ö Ù y ô ö 4 í ù ø Ô Ó à Û Ñ Ü Ú Ñ

2 8 é ì ü

2 8 é ì ü

2 8 é ü ² 4

÷ â â Ü Ñ á à ã Ú Ù Ñ Ó Ò Ñ â Ó Ý Ñ Ü Ò Ô

4 Ñ Þ Ö æ Ñ â å ß à Û Ú Ó Ò Ñ Ó Ý Ñ Ü Ò Ô

2 8 é ü ² 4

4 Ñ Ò å Ù Ü Ò Ð Ñ Ð Û Ý Ð Ñ Ô Ò Ô Ú Ö Ù Û Ü Ý Ó Ý Ñ Ü Ò

Fig. 3. Beat Tracking Algorithm.

Time
Events

A B C D E F

Agent1

Agent2

Agent2a

Agent3

Fig. 4. Beat tracking by multiple agents.

are in the initial section, and then nominally it is expected
that 4 agents would be created, one for each (tempo hypo-
thesis, initial event) pair. In fact, only 3 agents are created,
Agent 1 with the faster tempo, and Agent 2 and Agent 3 with
the slower tempo. This is because the system recognises that
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48 S. Dixon

40% of the inter-beat interval respectively before and after
the predicted beat time, represents changes in tempo and/or
phase which an agent will accept as a possibility, but not 
a certainty. The asymmetry reflects the fact that expressive
reductions in tempo are more common and more extreme
than tempo increases (Repp, 1994).

There are three possible scenarios when an agent
processes an event, illustrated in Figure 4. The simplest case
is when the event falls outside the tolerance windows of 
predicted beat times, and the event is ignored. For example,
in the figure, event D is ignored by Agent 1 and Agent 3, and
event B is ignored by Agent 2. The second case is when the
event falls in the inner tolerance window of a predicted beat
time, so that the event is accepted as a beat time. Event B
with Agent 1 and events D and E with Agent 2 are examples
of this case. If the event is not in the first predicted beat
window, then the missing beats are interpolated by dividing
the time interval into equal durations, as shown by the hollow
circles in the figure. For example, this occurs at events C, E
and F for Agent 1 and event E for Agent 3. The agent’s tempo
is then updated by adjusting the tempo hypothesis by a frac-
tion of the difference between the predicted and chosen 
beat times, and the score is updated by adding the salience
of the event, which is also adjusted (downward) according to
the difference between predicted and chosen beat times. 
The third and most complex case is when the event falls in
one of the outer tolerance windows. In this case, the agent
accepts the event as a beat time, but as insurance against a
wrong decision, also creates a new agent that does not accept
the event as a beat time. In this way, both possibilities can be
tracked, and the better choice is revealed later by the agents’
final scores. This is illustrated in Figure 4 at event E, where
Agent 2 accepts the event and at the same time creates Agent
2a to track the possibility that E is not a beat time.

Complexity management

Since each agent’s future beat tracking behaviour is entirely
based on its current state (tempo and phase) and the input
data, any two agents that agree on the tempo and phase will
exhibit identical behaviour from that time on, wasting 
computational resources. In order to increase efficiency, the
duplicate agents are removed at the earliest opportunity. The-
oretically, such an operation should make no difference to the
results produced by the system, but one complication arises,
that the tempo and phase variables are continuous, so equal-
ity is too strong a condition to use in comparing agents’
states. Therefore thresholds of approximate equality were

chosen, conservatively, at 10ms for the inter-beat interval
(tempo) difference and 20ms for the predicted beat time
(phase) difference.

When the decision to remove a duplicate agent is made,
it is important to consider which agent to remove. The agents
have different histories (otherwise the duplicate would have
been removed sooner), and therefore different evaluation
scores. Since the evaluation is calculated based only on the
relationship between predicted beat times and the rhythmic
events, and not on any global measure of consistency, it is
always correct to retain only the agent with the higher current
score, since it will also have the higher total score at the end
of beat tracking. In Figure 4, Agent 3 is deleted after event
E, because it agrees in tempo and phase with Agent 2. This
is indicated by the arrow between Agent 3’s and Agent 2’s
event E.

Assessment

The comparison of the agents’ beat tracking is based on three
factors: how evenly spaced the chosen beat times are, how
often the beat times match times of rhythmic events, and the
salience of the matched rhythmic events. As stated above, the
evenness of beat times is not calculated via a global measure,
but from the local agreement of predicted beat times and
rhythmic events.

For each beat time at which a rhythmic event occurs, a
fraction of the event’s salience is added to the agent’s score.
The fraction is calculated from the relative error of the 
predicted beat time; that is the difference in predicted and
chosen beat times, divided by the window half-width, which
is then halved and subtracted from 1. This gives a score
between 0.5 and 1.0 times the salience for each event. The
beat tracking algorithm then returns the agent with the great-
est score.

Estimating musical salience

In earlier work (Dixon, 2000), where it was assumed that
expressive variations in tempo were minimal, it was found
that no specific musical knowledge was needed by the system
in order to perform beat tracking successfully. That is, by
searching for a regularly spaced subset of the events with few
gaps and little variation in the spacing, the system was able
to find the times of beats. As the system was tested with more
expressive musical examples, it was found that the search had
to allow greater variation in the beat spacing, which led 
to an increase in the number of choices, and therefore the
number of agents. Without further musical knowledge, it was
not possible for the system to choose correctly between the
many possible musical interpretations offered by the various
agents. In this section we describe how knowledge of musical
salience was added to the system in order to direct the system
to the more plausible musical interpretations (Dixon & 
Cambouropoulos, 2000).

Time
Events

A B C D

Inner windows:

Outer windows:

Fig. 5. Tolerance windows for beat tracking.
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Automatic extraction of tempo and beat from expressive performances 49

When comparing beat tracking results for audio and MIDI
versions of the same performances, it was discovered that the
onsets extracted from audio data, although unreliable, pro-
vided a better source of data for beat tracking than the onset
times extracted without error from the MIDI data. It was pos-
tulated that this was due to an implicit filtering of the data.
That is, only the more significant onsets had been extracted;
the less salient onsets remained undetected, and had no influ-
ence on the beat tracking system. The reason this was advan-
tageous is that the more salient events are more likely to
correspond to beat times than the less salient events, and
hence the search had been narrowed by the onset detection
algorithm.

This hypothesis is tested by incorporating knowledge of
musical salience into the system, and measuring the corre-
sponding performance gain. This is done using MIDI data,
since parameters such as duration, pitch and volume, which
are important determiners of salience, are all directly avail-
able from the data.

Observations from music theory

The tendency for events with greater perceptual salience 
to occur in stronger metrical positions has been noted by
various authors (Longuet-Higgins & Lee, 1982; Lerdahl 
& Jackendoff, 1983; Povel & Essens, 1985; Lee, 1991; 
Parncutt, 1994). The factors influencing perceived salience
have also been studied, although no model has been pro-
posed which predicts salience based on combinations of
factors, or which gives more than a qualitative account of the
effects of parameters.

Lerdahl and Jackendoff (1983) classify musical accents
into three types: phenomenal accents, which come from
physical attributes of the signal such as amplitude and fre-
quency; structural accents, which arise from perceived points
of arrival and departure such as cadences; and metrical
accents, points in time which are perceived as accented due
to their metrical position. We only concern ourselves with the
first type of accent here, since the higher level information
required for the other types is not available to the beat track-
ing system. Lerdahl and Jackendoff list the following types
of phenomenal accent (which they consider incomplete):
note onsets, sforzandi, sudden dynamic or timbral changes,
long notes, melodic leaps and harmonic changes. However,
they give no indication as to how these factors might be com-
pared or combined, either quantitatively (absolute values) or
qualitatively (relative strengths).

In other models of meter perception, the main factor
determining salience is note duration, which is usually taken
to mean inter-onset time rather than perceived or physical
sounding time of a note. For example, Povel and Essens
(1985) describe three scenarios in which a note receives 
a perceived accent relative to other notes of identical pitch,
amplitude envelope and physical duration. In their model,
notes which are equally spaced in time form groups, subject
to the condition that there are no notes outside the group

which are closer to any note in the group. Then the notes
which receive accents are: notes which do not belong to any
group, the second note of any group of two notes, and the
first and last note of any group of three or more notes. All of
these accents, except the first note in groups of 3 or more,
fall on notes with a long duration relative to their context.
Other authors (Longuet-Higgins & Lee, 1982; Parncutt,
1987; Lee, 1991) also state that longer notes tend to be 
perceived as accented.

All of the models based on inter-onset times were devel-
oped in a monophonic context, and are difficult to interpret
when considering the polyphonic context of most musical
performances. For example, one would intuitively expect that
a long note in a melody part should not lose its accent due
to notes in the accompaniment which follow shortly after 
the onset of the melody note. However, if we were to observe
the inter-onset times only, this would be the result of such
models. To adapt to polyphonic music, a model of auditory
streaming (Bregman, 1990) could be applied, so that inter-
actions between streams are removed, but that raises the dif-
ficult question of how the metrical perception of the various
streams could be combined into a single percept. A simpler
approach is to use the physical durations of notes rather than
inter-onset times, even though these are difficult to estimate
from audio data.

Combining salience factors

For this work, the factors chosen as determiners of musical
salience were note duration, simultaneous note density, note
amplitude and pitch, all of which are readily available in the
symbolic representation of the performance. The next task
was the combination of these factors into a single numerical
value, representing the overall salience of each rhythmic
event. None of the above-mentioned work has investigated or
proposed a method of combining salience, so it was decided
to test two possible salience models by their influence on the
beat tracking results. The two models presented are a linear
combination sadd(d, p, v) of duration d, pitch p and amplitude
v, and a nonlinear, multiplicative function smul(d, p, v) of 
the same parameters. A threshold function is used to restrict
the values of p to a limited range, and constants are used to
set the relative weights of the parameters. The salience of a
group of notes combined as a single rhythmic event was cal-
culated using the longest duration, the sum of the dynamic
values and the lowest pitch of all the notes in the group.

The salience functions were defined as follows:

where
c1, c2, c3 and c4 are constants,
d is duration in seconds,
p is pitch (MIDI number),
v is dynamic value (MIDI velocity), and

s d p v c d c p p p c v

s d p v d c p p p v
add

mul

, , ,

, , ,

( ) = ◊ + ◊ [ ]+ ◊
( ) = ◊ - [ ]( ) ◊ ( )

1 2 3

4

min max

min max log
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The following weights for the parameters were determined
empirically:

c1 = 300
c2 = -4
c3 = 1
c4 = 84

pmin = 48
pmax = 72

These values make duration the most significant factor, with
dynamics and pitch being useful primarily to distinguish
between notes of similar duration. This salience calculation
is not sufficient for all possible MIDI files. In particular, 
it would not work well for non-pitched percussion such as
drums, where the salience is clearly not so strongly related
to duration. Such instruments should be treated separately as
a special case of the salience calculation.

We will now describe the task of evaluating the beat track-
ing system, before presenting the results in the following
section.

Evaluation

We know of no precise definition of beat for expressively per-
formed music. The definitions given in the first section of the
paper do not uniquely define the relevant quantities or give
a practical way of calculating them from performance data.
In this section, we describe the difficulties with formalisation
and evaluation of beat tracking models and systems, and then
describe the evaluation methodology used in this work.

Problems with evaluation

The tempo induction and beat tracking algorithms described
in this paper were not designed for any particular style of
music. They operate in the same way for classical music
played from a score as for improvised jazz. This immediately
creates a difficulty for evaluation, in that we cannot assume
that a musical score is available to define which notes coin-
cide with beats and which do not. It is laborious (but pos-
sible) for a trained musician to transcribe a performance in
enough detail to identify which notes occur on the beat. But
even when a score or transcription exists, there is no error-
free, automatic way to associate the score timing with the
performance timing of audio data. That is, given a score, we
can establish which notes in the score correspond to beat
times, but we do not know the absolute times of score notes,
and the beat tracking system returns its results as absolute
times. The accurate extraction of onset times in polyphonic
music is an unsolved problem, so we are forced to rely on
hand-labelled or hand-corrected data for evaluation pur-
poses. This issue is discussed in much greater detail by Goto

p p p

p p p

p p p p

p p p
min max

min min

min max

max max

,

,

,

,

[ ] =
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Ì
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and Muraoka (1997a), who also use a similar approach to
that which we describe below.

Further problems exist which apply equally to audio and
symbolic performance data. There are many cases in which
the beat is not uniquely defined by performance data. In 
the simplest case, consider a chord which occurs on a beat
according to the score. In performance, it has been observed
that the notes of a chord are not necessarily played simulta-
neously, and these asynchronies may be random or system-
atic (e.g., melody lead) (Palmer, 1996; Repp, 1992; Goebl,
2001). The problem is more pronounced in ensemble situa-
tions, where there are often systematic timing differences
between performers (participatory discrepancies) (Keil,
1995; Prögler, 1995; Gabrielsson, 1999).

It is not obvious how the beat time should then be defined,
whether at the onset of the first note of the chord, or of the
last, the lowest, or the highest, or at the (weighted) average
of the onset times, or alternatively expressed as a time inter-
val. The problem is exacerbated in situations where timeless
events are notated, such as grace notes and arpeggios. Per-
formers may interpret grace notes in different ways, some-
times to precede the beat, and sometimes to coincide with
the beat. In some cases hearers do not even agree on which
interpretation they think the performer applied.

It is reasonable to question whether beats necessarily cor-
respond to event times. A beat percept induced by previous
events might be stronger than that of an event which nomi-
nally coincides with the beat, and in this case the event is
perceived as anticipating or following the beat rather than
defining the beat time.

The point of this section is to show that some subjective
judgement is necessary in evaluating the results produced 
by a beat tracking program. Our aim is to keep this subjec-
tivity to a minimum, and define an evaluation methodology
which gives repeatable results. We distinguish between two
approaches to beat tracking: predictive (perceptual) and
descriptive beat tracking. An algorithm is said to be causal
if its output at time t depends only on input data for times 
£ t. Predictive beat tracking models perception using 
causal algorithms which predict listeners’ expectations of
beat times, necessarily smoothing the performance expres-
sion. Descriptive beat tracking models musical performance
non-causally, giving beat times with a more direct corre-
spondence to the performance data than predictive beat 
tracking. For a perceptual model of beat tracking, detailed
perceptual studies are required to resolve the issues discussed
above. A descriptive approach, as taken in the current work,
allows the data to define beat times more directly.

Informal evaluation: listening tests

Before describing the formal evaluation methods, we briefly
describe an informal, subjective method used to ascertain
whether the results appear to make musical sense. We have
already expressed the importance of objective evaluation, but
since we are dealing with the subjective medium of music, it
is also important that the evaluation is musically plausible.
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Automatic extraction of tempo and beat from expressive performances 51

This is done by creating an audio file consisting of the 
original music plus a click track – a percussion instrument
playing on the beat times estimated by the beat tracking 
algorithm. The click track is synthesised from a sample of a
chosen percussion instrument, and can be added as a sepa-
rate channel (for separate volume control) or mixed onto the
same channel as the music (for use with headphones, to avoid
streaming due to spatial separation).

This is the least precise but perhaps the most convinc-
ing way to demonstrate the capabilities of the system. Apart
from being subjective, a further problem with listening 
tests is the amount of time required to perform testing. When
it is desired to systematically test the effects of a series 
of changes to the system, it is impractical to listen to every
musical example each time. It is also difficult to compare the
number and types of errors made by different versions of
algorithms or by the same algorithm with different parameter
values.

Beat labelling

For pre-recorded audio data it is necessary to perform the
labelling of beat times subjectively. This is done using soft-
ware which provides both audio and visual feedback, so that
beat times can be selected based on both the amplitude enve-
lope and the sound. For popular music, it is sufficient to inter-
polate some of the beat times in sections of effectively
constant tempo, thus greatly accelerating the beat label-
ling process. This technique was also used to determine 
beat times which could not be accurately estimated by other
methods.

In the case of the symbolic performance data, it had
already been matched to a digital encoding of the musical
scores, thus allowing automatic evaluation of the system by
comparing the beat tracking results (the reported beat times)
with the onset times of events which are on the beat accord-
ing to the musical score (the notated beat times). For beats
with multiple notes, we took the beat time to be the interval
from the first to the last onset of events which are nominally
on the beat.

We refer to the beats calculated in either of these ways 
as the “correct” beat times, and use them as the basis for 
evaluation.

Evaluation formula

The reported beat times are then matched with the correct
beat times by finding the nearest correct beat time and
recording a match if they are within a fixed tolerance, and 
no match if the tolerance is exceeded. This creates three
result categories: matched pairs of reported and correct beat
times, unmatched reported beat times (false positives) and
unmatched correct beat times (false negatives). These are
combined using the following formula:

Evaluation
n

n F F
=

+ ++ -

where n is the number of matched pairs, F + is the number 
of false positives, and F - is the number of false negatives. In
this work, the tolerance window for matching beats was
chosen to match the window for note simultaneity, which is
70ms either side of the beat time. A less strict correctness
requirement would allow the matching of pairs over a larger
time window, with partial scores being awarded to near
misses, and the numerator of the equation being replaced by
the sum of these partial scores (Cemgil et al., 2000).

The evaluation function yields a value between 0 and 1,
which is expressed as a percentage. The values are intuitive:
if the only errors are false positives, the value is the per-
centage of reported beats which are matched with correct
beats; if the only errors are false negatives, the value is the
percentage of correct beats which were reported.

Metrical levels

The final aspect of evaluation is that of metrical levels. As
discussed earlier, it is possible to track beats at more than one
level, and different listeners will feel natural tapping along
at different levels. For example, in a piece that has a very
slow tempo, it might be natural to track the beat at double
the rate indicated by the notation (Desain & Honing, 1999).
Various authors report preferred inter-beat intervals around
500ms to 700ms (Parncutt, 1987, 1994; Todd & Lee, 1994;
van Noorden & Moelants, 1999), with possible inter-beat
intervals falling within the range of 200ms to 1500ms (van
Noorden & Moelants, 1999). In performances of 13 Mozart
piano sonatas (see results section), the inter-beat interval at
the notated metrical level ranged from 200ms to 2000ms.
Therefore it is clear that the metrical levels of the perceived
beat and the notated beat are not necessarily the same.

The formula given in the previous subsection gives a rea-
sonable assessment of correctness only when the metrical
level of beat tracking equals the metrical level of assessment.
When the metrical levels fail to coincide, it is tempting to
interpolate or decimate the labelled beat times in order to
bring the levels into agreement. However, this is incorrect,
because it doesn’t take phase into account. It is generally
easier to track music at lower (i.e., faster) metrical levels, and
harder at higher (slower) metrical levels, because the likeli-
hood of phase errors is much higher at the higher levels. An
agent which tracks popular music in 4/4 time at the half note
level is much more likely to be 50% out of phase (tracking
beats 2 and 4) than an agent at the preferred quarter note level
(tracking every off-beat). We revisit this issue in the results
section.

Implementation and results

Implementation details

The beat tracking system is implemented on a Linux plat-
form in C++, and consists of approximately 7000 lines of
code in 18 classes. On a 500MHz Pentium computer, audio
beat tracking takes under 20% of the length of the music (i.e.,
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52 S. Dixon

a 5 minute song takes less than one minute to process) and
beat tracking of symbolic data is much faster, taking between
2% and 10% of the length of the music, depending on the
note density.

Audio data

The audio data used in these experiments is listed in Table 1,
which also provides the letters used to identify the pieces in
the text. The pieces were chosen to represent various styles
of music, and are listed in order of subjective beat tracking
difficulty.

The first 3 pieces (I,D,U) are standard modern pop/rock
songs, characterised by a very steady tempo, which is clearly
defined by simple and salient drum patterns, similar to the
data used in the early audio beat tracking work of Goto and
Muraoka (1995). In these songs the performed beat is very
regular, with only small deviations from metrical timing. 
It is assumed that this is the simplest type of data for beat
tracking.

The next 2 pieces (S,Y) have a Motown/Soul style, char-
acterised by more syncopation, greater tempo fluctuations
(5–10% in these examples), and more freedom to anticipate
or lag behind the beat. It is expected that these examples are
more difficult for a beat tracking system, but only of medium
difficulty.

The remaining pieces were chosen as having particular
characteristics which make beat tracking difficult. The Bob
Dylan song (O) is made difficult by the fact that the drums
are not prominent, and there is a much lower correlation

between the beat and the events than in the other styles, due
to his idiosyncratic style of singing and playing against the
rhythmic context.

The classical piece (P), the first section of the third move-
ment of Mozart’s Piano Sonata in C major (KV279), was 
synthesised from the MIDI data used in the beat tracking
experiments using symbolic input data. This piece was chosen
as an example of a piece with significant tempo fluctuations.

The next piece (R) is a live bossa nova performance with
syncopated guitar and vocals, and very little percussion to
indicate beat times. Sections of this piece are difficult for
humans to beat track.

The two jazz pieces (M,J) were chosen for their particu-
larly complex, syncopated rhythms, which are difficult even
for musically trained people to follow. These pieces also pro-
vided examples of a different meter and swing eighth notes.

Tempo induction results

The tempo induction algorithm for audio data was tested 
on short segments of the above pieces to determine how 
reliably the ranked tempo hypotheses agreed with the mea-
sured tempo. (Piece P was not available at the time of this
experiment.)

The tempo induction algorithm was applied to segments
of 5, 10, 20 and 60 seconds duration of each piece, starting
at each 1 second interval from the beginning of the piece. 
A tempo hypothesis was considered correct if the inter-
beat interval was within 25ms of the measured inter-beat
interval. Table 2 shows the results for 10 second excerpts,

Table 1. Details of audio data used in experiments.

ID Title (Artist) CD (Number) Style
(Date)

I I Don’t Remember A Thing Under the Sun Pop/rock
(Paul Kelly and the Coloured Girls) (Mushroom CD 53248) (1987)

D Dumb Things Under the Sun Pop/rock
(Paul Kelly and the Coloured Girls) (Mushroom CD 53248) (1987)

U Untouchable Under the Sun Pop/rock
(Paul Kelly and the Coloured Girls) (Mushroom CD 53248) (1987)

S Superstition Talking Book Motown
(Stevie Wonder) (Motown 37463-03192-9) (1972)

Y You Are The Sunshine of My Life Talking Book Motown
(Stevie Wonder) (Motown 37463-03192-9) (1972)

O On A Night Like This Planet Waves Country
(Bob Dylan) (Columbia CD 32154) (1974)

P Piano Sonata in C (Movt 3, Sec 1) [Synthesised from MIDI] Classical
(Wolfgang Mozart) (1775)

R Rosa Morena Samba and Bossa Nova Bossa nova
(João Gilberto Trio) (Jazz Roots CD 56046) (1964)

M Michelle Flight of the Cosmic Hippo Jazz swing
(Béla Fleck and the Flecktones) (Warner 7599-26562-2) (1991)

J Jitterbug Waltz Snappy Doo Jazz waltz
(James Morrison) (WEA 9031-71211-1) (1990)
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Automatic extraction of tempo and beat from expressive performances 53

showing the position that the correct tempo hypothesis was
ranked by the tempo induction algorithm. The results are pre-
sented as percentages of the total number of segments. The
cumulative sums of rankings are shown in Figure 6.

Table 3 shows the effect of length of the segments on
tempo induction. Each column represents a different segment
size, and the entries show the percentage of segments for
which the correct tempo was included in the top 10 ranked
clusters. Even with 5 second segments, the tempo induction
algorithm is quite reliable, and reliability increases with
segment size.

The tempo induction stage provides a solid foundation for
the beat tracking agents to work from, and is robust even for

highly syncopated pieces of music. We now present the beat
tracking results, first for audio data, and then the MIDI-based
experiments.

Audio beat tracking

In Table 4, we present the results for beat tracking of the
audio data. The rightmost column of the table indicates the
percentage of beat times which were calculated correctly by
the beat tracking system, a simpler measure of system per-
formance than that given in the previous section. This does
not indicate the nature of the errors made during beat track-
ing. For each of the songs listed, the tempo was estimated

Table 2. Beat induction of 10 second segments of songs. All figures are percentages of the
total number of segments.

ID Ranking of Correct Tempo Sum of

1 2 3 4 5 6 7 8 9 10
top 10

I 85.9 13.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
D 91.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
U 96.3 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
S 31.2 40.5 18.6 7.0 0.5 0.0 0.0 1.4 0.5 0.0 99.5
Y 86.7 11.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.2
O 83.9 12.9 2.4 0.0 0.0 0.8 0.0 0.0 0.0 0.0 100.0
R 58.7 18.2 7.6 3.6 1.3 2.7 0.9 0.9 0.0 0.9 94.7
M 16.9 25.9 16.9 12.9 4.7 6.5 1.8 1.8 1.8 1.1 90.3
J 61.5 13.4 9.2 3.1 4.2 0.4 0.4 0.4 0.0 0.0 92.4
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Fig. 6. Tempo induction results for 10 second segments shown as cumulative sums of percentages from Table 2.
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correctly. That is, the highest scoring agent was an agent with
the correct tempo hypothesis. The results column can be con-
sidered as the percentage of the song for which this agent
was in phase with the beat.

The pieces expected to be easy to beat track (I,D,U) were
tracked without error. The medium difficulty pieces (S,Y)
were tracked with some phase errors, from which the agent
recovered quickly. In piece (O), there were two sections in
which the agent lost synchronisation and tracked the off-
beats (i.e., it continued at the correct tempo but half a beat
out of phase), but eventually recovered to the correct phase.
Even in this case, 79% of the piece was tracked correctly. In
(P), the agent lost synchronisation several times, due to large
tempo variations and the agent’s lack of musical knowledge
for distinguishing between beats and off-beats. In this case,
the errors amounted to only 10% of the piece. Piece (R) was
expected to be difficult because of the syncopation, but it was
tracked correctly except for a few phase errors, from which
it recovered within a few beats. In the case of the jazz piece
(M) the results were surprisingly good (92%), probably due
to the fast tempo, which reduces the likelihood of phase
errors. The second jazz piece (J) scored lowest (77%), but
still was correctly tracked for more than three quarters of the

piece. An average person would probably perform no better
on the last two pieces.

MIDI beat tracking

A series of experiments was performed to test the hypothesis
that musical salience is useful in guiding the beat tracking
process. In Experiment 1, the performance of the beat track-
ing algorithm without the use of salience was established. In
terms of the evaluation function used for the agents, a con-
stant value was used for the salience of all rhythmic events.
This set the base level for the measurement of the perfor-
mance gain due to the salience calculations.

In the second experiment, the behaviour of the audio beat
tracking system was simulated, by applying the salience
function sadd(d, p, v) to the events and deleting those events
with a salience below a fixed threshold value. The beat track-
ing algorithm was then applied to the remaining events, but
using a constant salience value in the evaluation functions as
for Experiment 1.

The third experiment tested the use of the salience values
in the agents’ evaluation functions directly. In this case the
agents accumulated a progressive score consisting of the 
sum of adjusted salience values for the events tracked by 
the agent. The two different salience functions were tested:
Experiment 3a tested the non-linear function smul(d, p, v) and
Experiment 3b tested the linear function sadd(d, p, v).

The data consisted of 13 complete piano sonatas by
Mozart (KV 279–KV 284, KV 330–KV 333, KV 457, KV
475 and KV 533), played by a professional pianist. This totals
several hours of music, and over 100000 notes. The files were
divided into sections as notated in the music, and beat track-
ing was performed separately on each file (222 files in all).

The first set of results shows the tapping rate chosen by
the highest scoring agent, relative to the rate of the primary
metrical level. For almost all sections, a musically plausible
metrical level was chosen, with slightly worse performance
in Experiment 1 where salience was not used. Table 5 shows
the number of sections which were tracked at various multi-
ples of the tempo of the primary metrical level. The rows
labelled other and fail represent the cases where the tempo

Table 3. Effects of segment length on tempo induction: for each
segment length, the percentage of segments with the correct tempo
in the top 10 hypotheses is shown.

Piece Correct Tempo in Top 10
ID

5s 10s 20s 60s

I 100.0 100.0 100.0 100.0
D 100.0 100.0 100.0 100.0
U 100.0 100.0 100.0 100.0
S 93.5 99.5 99.5 100.0
Y 96.9 99.2 100.0 100.0
O 95.2 100.0 100.0 100.0
R 84.9 94.7 100.0 100.0
M 84.9 90.3 95.3 95.9
J 79.2 92.4 97.6 99.1

Table 4. Beat tracking test details and results.

ID Tempo range Meter Results

I 139–142 4/4 100%
D 151–154 4/4 100%
U 145–146 4/4 100%
S 96–104 4/4 96%
Y 127–136 4/4 92%
O 136–140 4/4 79%
P 120–150 2/4 90%
R 128–134 4/4 95%
M 180–193 3/4 92%
J 155–175 3/4 77%

Table 5. Beat tracking rates relative to the primary metrical level.

Relative Number of sections
tempo

Exp1 Exp2 Exp3a Exp3b

0.5 10 9 10 10
1.0 121 143 146 137
1.5 16 0 1 5
2.0 40 40 41 42
3.0 4 3 3 4
4.0 23 23 20 22
other 8 2 1 2
fail 0 2 0 0
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was not related to the primary metrical level, and when beat
tracking failed to produce a solution at all, respectively. The
majority of sections were tracked at the notated level or 
otherwise 2 or 4 times the notated level.

To test the correspondence of these results to human per-
ception of beat, the results were compared with the metrical
levels chosen by a human (the author) tapping in time with
each of the sections. In the majority of cases (155), there
were two possible metrical levels chosen for the beat; in 
49 cases, three levels were considered possible, and in the
remaining 18 cases, only one rhythmic level was considered
reasonable. Table 6 shows the relationship between the
system’s choices and the “perceptually reasonable” metrical
levels. The errors (cases where the system’s tapping rate was
not one of those chosen as a reasonable rate) are divided into
three types: double tempo errors, where the system chose a
rate of double the fastest human tapping rate, which in each
case was a musically possible alternative; half tempo errors,
where the system chose to tap in quarter notes, but the piece
was in compound time, which is musically incorrect; and
other errors, which were mostly the system tapping in dotted
quarter notes for pieces in simple time, which again is musi-
cally wrong.

Table 7 shows the results of evaluating the beat tracking
of the sections which were tracked at the primary metrical
level (which in each case also corresponded to a perceptu-

ally reasonable metrical level for the beat). Evaluation was
performed using the formula given in the previous section.
For each experiment we show the number of sections (n) and
the percentage of sections which achieved various minimum
scores.

Experiment 1 gives the base level performance of 
the system without musical knowledge. Approximately one 
third of the sections were tracked correctly, with a further
third scoring over 70%. At the bottom of the table, the 
results for each experiment are summarised in a single 
value, the weighted average of the beat tracking evaluation
results, weighted by the number of beats. For experiment 1,
without musical salience, the system found 75% of beat
times.

Experiment 2 gave mixed results, since the removal of
events which were deemed to be non-salient also removed
many events which occurred on beats, making it more diffi-
cult for the beat tracking system to determine some of the
beat times. Nevertheless, the net result of this experiment was
positive, with 88.8% of the sections scoring over 70%, and
a total of 85% of the beats being found.

The third experiment shows a further improvement in 
performance due to the use of salience in the beat track-
ing process, with the additive salience function sadd(d, p, v)
performing slightly better than the multiplicative function
smul(d, p, v). For these two functions the weighted averages
were 91.1% and 88.5% respectively, which shows a clear per-
formance gain due to the inclusion of musical knowledge in
the form of salience calculations in the system.

Discussion and conclusion

We have described a beat tracking system which analyses
musical data, detects the onsets of rhythmic events and their
salience and then determines the tempo and beat times using
a multiple hypothesis search. The system successfully calcu-
lates the tempo for most musical situations, and tracks the
beat with occasional phase errors. The system’s performance

Table 6. Correspondence of beat tracking rates relative to human
tapping rates.

Number of sections

Exp1 Exp2 Exp3a Exp3b

correct 170 194 200 189
error: double 17 15 10 15
error: half 10 9 10 10
error: other 25 4 2 8

Table 7. Evaluation of beat tracking at the primary metrical level.

Result Exp. 1 Exp. 2 Exp. 3a Exp. 3b
Range

n % n % n % n %

100% 42 34.7 17 11.9 54 37.0 59 43.1
≥95% 46 38.0 50 35.0 71 48.6 82 59.9
≥90% 57 47.1 87 60.8 99 67.8 105 76.6
≥85% 63 52.1 105 73.4 116 79.5 118 86.1
≥80% 68 56.2 115 80.4 130 89.0 127 92.7
≥70% 81 66.9 127 88.8 137 93.8 130 94.9
≥50% 100 82.6 136 95.1 143 97.9 136 99.3
≥0% 121 100.0 143 100.0 146 100.0 137 100.0
Average 75.4% 85.0% 88.5% 91.1%
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is robust, in that it recovers from errors and resumes correct
tracking quickly, a capability reported to be lacking in earlier
systems (Dannenberg, 1991). Informal listening tests demon-
strate that the system captures some part of human musical
ability in the way that it tracks tempo variations.

One design goal for the system was that it be as general
purpose as possible, that is, not focussed on any particular
style of music. To date, the system has been tested on a large
corpus of expressively performed classical music, and a
range of Western popular music, with positive results. We
speculate that the system will work equally well with other
styles of music, subject to the following two restrictions.
First, the system assumes that the music has a beat, with 
no large discontinuities; it does not answer the question of
whether or not a piece of music has a beat. Second, although
the tempo induction and beat tracking algorithms are inde-
pendent of the instrumentation, the calculation of rhythmic
events is not. For MIDI input, the salience function lacks a
special case computation of the salience of drum sounds. For
audio input, the onset detection algorithm assumes the pres-
ence of notes with a sharp attack, for example, piano, guitar
or drums; in the absence of such instruments it is likely that
a frequency domain onset detection algorithm would need 
to be developed. Nevertheless, the results presented in the
previous section indicate that beat tracking accuracy is not
dependent on musical style directly, but rather on rhythmic
complexity (Dixon, 2001a).

There are a large number of parameters which can be
varied in order to tune the behaviour of the system. Most
parameter values and knowledge used in the system are quite
low-level, being derived from knowledge of human per-
ception. The system was designed to work autonomously, 
and the results which have been presented were generated
without fine-tuning the parameters (with the exception of the
constants used in the salience calculation). Many of the para-
meter values are not critical to the behaviour of the system,
in a global (average) sense, although they may lead to dif-
ferent results on a local level. The weights attached to factors
which support the various competing hypotheses are neces-
sarily somewhat arbitrary. In complex music there are com-
peting rhythmic forces, and higher level knowledge of the
musical structure makes the correct interpretation clear to a
human listener. The beat tracking agents do not make use of
such high level knowledge, and therefore their decisions are
influenced by more arbitrary factors such as the numerical
values of parameters.

Despite the beat tracking system’s lack of higher level
musical knowledge, such as notions of off-beats or expected
rhythmic patterns, it still exhibits an apparent musical intel-
ligence, which emerges from patterns and structure in the
data, rather than from high-level knowledge or reasoning
(Brooks, 1991). This makes the system simple, robust and
general. In order to disambiguate more difficult rhythmic pat-
terns, it was shown that the use of simple musical knowledge
in addition to the timing of events can be used to improve

performance considerably. Further improvement can be
achieved, at the expense of generality, by programming high-
level knowledge of stylistic expectations.

There are many avenues open for further work, in the form
of applications, improvements and further investigations.
One application which is currently under development is 
the implementation of an interactive beat tracking system
that allows correction of errors via a graphical interface, and
restarting the beat tracking from any point in the data (Dixon,
2001b). This is being developed as a tool for use in the analy-
sis of expressive performances, as it can generate data such
as tempo curves semi-automatically.

It is clear that beat tracking can be improved if the system
is given information about the music it is tracking. In the 
performance analysis application, for example, the score is
usually available, so by modifying the agents’ evaluation to
favour interpretations which match the patterns expected
from the score, a fully automatic timing analysis system
could be created.

Conversely, another useful tool would be that of a score
extraction system for MIDI performance data. This would
involve extending the system to perform quantisation of all
rhythmic events, as well as other tasks such as note spelling,
part separation and induction of the key and time signatures
(Cambouropoulos, 1996, 2000).

A further extension is the idea of converting the system
to operate in real time, such as the systems of Goto and
Muraoka (1995, 1998, 1999). The current approach is fast
enough for a real time implementation, but the algorithm is
not causal and would need to be modified in order to create
a real time system.

This work also suggests several possible modifications 
to the system. Currently, the agents are assessed wholisti-
cally, that is, on the basis of their performance for the com-
plete input data. The agents could improve their results by
self-analysis, finding any inconsistencies or times where 
the evaluation function is low, and searching for better solu-
tions based on the high-scoring parts of their results. Tempo
induction is also performed on a larger scale than necessary,
and the two algorithms could be modified so that tempo
induction is calculated on a more local level and comm-
unicated to the agents as they perform beat tracking. Some
of the parameter values were chosen arbitrarily, and the
system could be improved by analysing musical data and
extracting parameter values that correspond better to perfor-
mance data.

Finally, although the system is not a model of human 
perception, a comparison between the correctness and 
accuracy of the system and of human subjects would be 
interesting, and would shed light on the more difficult eval-
uation issues, perhaps leading to a clearer understanding 
of beat tracking. It is not known what the limit of beat track-
ing performance is; it would be interesting to compare the
current results with human beat tracking ability on the same
pieces.
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